Part Number Hot Search : 
BSS145 330J03 KPY56RK A29FAG SMM665C 74HC5 PD166 A1015
Product Description
Full Text Search
 

To Download STW4810 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 www..com
STW4810
Power Management for Multimedia Processors
PRELIMINARY DATA
Features
2 Step-down converters - 1 to 1.5V with 15 steps at 600mA - 1.8V at 600mA for general purpose usage 3 Low-drop output regulators for different uses - PLL analog supplies: 1.05V, 1.2V, 1.3V 1.8V - 10mA - Processor analogue functions: 2.5V - 10mA - Auxiliary device: 1.5V, 1.8V, 2.5V, 2.8V - 150 mA USB OTG module - Full and low speed USB OTG transceiver - Charge-pump (5V, 100mA) for USB cable Mass memory cards (SD/MMC/SDIO) - 1 linear regulator: 1.8V, 2.85V, 3V - 150mA - Level shifter Miscellaneous - 32 kHz control for multimedia processor - Processor supply monitoring - Processor reset control - 2 Serial I2C interfaces
STW4810BHD TFBGA 84 6x6x1.2mm 0.5mm pitch STW4810BRA VFBGA 84 4.6x4.6x1.0mm 0.4mm pitch
Description
STW4810 is a power management companion chip for multimedia processors used in portable applications. It supplies the multimedia processor including its memories and peripherals. STW4810 supports the main mass memory standard cards. SDIOTM is also supported and allows to connect multimedia peripherals like cameras.
Application

ST NOMADIKTM STn88xx Multimedia processor Mobile phones, PDA, Videophone
Order codes
Part number STW4810BHD/LF STW4810BRA/LF Package TFBGA84- 6x 6 x 1.2 mm / 0.5 mm pitch VFBGA 84 - 4.6x 4.6 x 1 mm / 0.4 mm pitch Tray Tray Packing
February 2006 www..com
Rev3
1/72
www.st.com
1
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
www..com
STW4810
Contents
1 2 3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ball information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1 3.2 Ball connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Ball functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Digital control module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 State machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 POWER OFF / VDDOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SLEEP mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 IT generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Clock switching and control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3
Power management module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8 4.3.9 Bandgap, biasing and references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 VCORE regulator: DC/DC STEP- DOWN regulator . . . . . . . . . . . . . . . . . . . 30 VIO_VMEM regulator: DC/DC step- down regulator . . . . . . . . . . . . . . . . . . . 31 VPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VANA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 VAUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Power supply domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Thermal shut-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4
USB OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 4.4.2 4.4.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Modes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 USB enable control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5
SD/MMC/SDIO module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2/72 www..com
Rev3
www..com
STW4810
5
Electrical and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1 5.2 5.3 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Package dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 VREF18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 VCORE DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 VIO_VMEM DC/DC step-down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 LDO regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Power supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4
Digital specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 CMOS input/output static characteristics: I2C interface . . . . . . . . . . . . . . . . 53 CMOS input/output dynamic characteristics: I2C interface . . . . . . . . . . . . . . 53 CMOS input/output static characteristics: VIO level . . . . . . . . . . . . . . . . . . . 54 CMOS input/output static characteristics: VBAT level . . . . . . . . . . . . . . . . . . . 56 CMOS input/output static characteristics: VMMC level . . . . . . . . . . . . . . . . . 57
5.5 5.6
USB OTG transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 SD/MMC card interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.1 6.2 Components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1 7.2 TFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 VFBGA 84 balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
www..com
Rev3
3/72
www..com
1 Overview
STW4810
1
Overview
Power management module - - - - - 1 Step-down converter for processor core (1 to 1.5 V with 15 steps at 600 mA) 1 Step-down converter (1.8 V at 600 mA) for general purpose usage such as processor input/output supply, external memory, DDR and SDRAM and peripherals 1 Low-drop output regulator for analog supplies, such as PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V at 10 mA) 1 Low-drop Output regulator for processor analogue functions (2.5 V at 10 mA) 1 Low-drop output regulator for auxiliary devices (1.5 V, 1.8 V, 2.5 V, 2.8 V at 150 mA) Full and low speed USB OTG transceiver 1 Linear regulators (3.1 V at 40 mA) supplying transceiver 1 Charge-pump (5 V at 100 mA) supplying VBUS line of the USB cable 1 Linear regulator (1.8 V, 2.85 V, 3 V at 150 mA) Level shifter 32 kHz control for multimedia processor Processor supply monitoring Processor reset control 2 Serial I2C interfaces
USB OTG module - - -
Mass memory cards (SD/MMC/SDIO) - -
Miscellaneous - - - -
Figure 1.
Typical mobile multimedia system
4/72 www..com
Rev3
www..com
STW4810
2 Functional block diagram
2
Figure 2.
Functional block diagram
STW4810 block diagram
VMINUS_VIO_VMEM VBAT_VIO_VMEM VMINUS_VCORE 1V=>1.5V- 600mA VLX_VIO_VMEM
VBAT_VCORE
VLX_VCORE
VIO_VMEM
VBAT_DIG VMINUS_DIG Internal oscillator 1.8V- 600mA
MASTER_CLK CLK32K_IN CLK32K GPO1 GPO2 USBINTn
clock switching and control SOFT_START VREF_VIO_VMEM
VREF_VCORE VREF_VPLL VREF_VAUX
VCORE
VBAT_ANA VMINUS_ANA BG
BIAS
Buffer
VREF_18
Control registers Thermal shutdown Monitoring VPLL_LDO 1.05V,1.2V,1.3V,1.8V, 10mA VANA_LDO 2.5V, 10mA PORn_VBAT
VBAT_VPLL_ANA
TCXO_EN REQUEST_MC PON VDDOK PORn PWREN SW_RESETn SDA SCL
VPLL
General control
VANA VBAT_VAUX VAUX_LDO 1.5V,1.8V2.5V,2.8V, 150mA
I2C interface I2C Mux
VAUX VBAT_USB
USB OTG transceiver interface USBSDA USBSCL IT_WAKE_UP SD/MMC/ SDIO control USBOEn USBVP USBVM USBRCV VMINUS_USB MCCMDDIR MCDAT0DIR MCDAT2DIR MCDAT31DIR MCCLK MCFBCLK MCCMD MCDATA0 MCDATA[3:1] Driver Level shifter Pull up & down VUSB ID DP DN VBAT_MMC SD/ MMC/SDIO interface USB control Charge pump 5V - 100mA CP CN VBUS
Control
3.1V - 40mA
Level shifter
1.8/2.85/3V-150mA
VMMC LATCHCLK CLKOUT CMDOUT DATAOUT0 DATAOUT[3:1]
Driver
www..com
Rev3
5/72
www..com
3 Ball information
STW4810
3
3.1
Table 1.
Ball information
Ball connections
STW4810 ball connections
1 2
VMINUS_ VIO_VMEM
3
VLX_VIO_ VMEM
4
5
6
VAUX VBAT_ VAUX VBAT_ANA
7
VANA "Reserved" VBAT_ VPLL_ANA
8
VPLL "Reserved" PON VLX_ VCORE ID "Reserved" "Reserved"
9
VREF_18 "Reserved" VMINUS_ VCORE VBAT_ VCORE DP VBAT_USB USBSCL USBSDA VMINUS_ USB MCDAT2 DIR
10
VCORE VMINUS_ VCORE VLX_ VCORE VBAT_ VCORE DN VUSB VBUS CP CN "Reserved"
A B C D E F G H J K
CLK32K_IN "Reserved" TCXO_EN VBAT_DIG DATAOUT0 DATAOUT <3> CLKOUT MCCMD MCDATA <2> MCDATA0
VBAT_VIO_ VIO_VMEM VMEM VMINUS_ ANA "Reserved"
REQUEST_ VMINUS_ VBAT_VIO_ MC VIO_VMEM VMEM IT_WAKE_ UP MASTER_ CLK DATAOUT <1> CMDOUT MCCLK MCDATA <3> VDDOK MCDAT0 DIR VMINUS_ DIG "reserved" DATAOUT <2> LATCHCLK MCCMD DIR MCDATA <1> PORN CLK32K MCDATA31 DIR VBAT_ MMC SW_ RESET VLX_VIO_ VMEM
MCFBCLK GPO1 VMMC
PWREN SCL GPO2
SDA USBVP USBRCV
USBINTn USBVM USBOEn
3.2
Ball functions
STW4810 includes the following ball types

VDDD/VDDA: digital/analog power supply VSSD/VSSA: digital/analog ground supply DO/DI/DIO: Digital Output / Digital Input / Digital Input Output DOz: Digital Output with high impedance capability AO/AI/AIO: Analog Output / Analog Input / Analog Input-Output G: to be connected to ground O: to be left open Int-Ref: Associated to internal reference
Table 2 details the ballout.
6/72 www..com
Rev3
www..com
STW4810
Table 2.
Ball
3 Ball information
STW4810 balls function
Ball name Ball type Description
General supplies D1 C3 C6 B5 F9 J9 A9 VBAT_DIG VMINUS_DIG VBAT_ANA VMINUS_ANA VBAT_USB VMINUS_USB VREF_18 VDDD-VBAT VSSD VDDA-VBAT VSSA VDDA-VBAT VSSA Int-Ref Battery supply for digital/oscillator Ground for digital and oscillator Battery supply for analog Ground for analog Battery supply for USB block Ground for USB block Internal reference
Control balls C8 K4 PON SW_RESETn DI(VBAT) Pull Down 1.5M DI(VIO_VMEM) Pull Up 1.5M DO(VIO_VMEM) DO(VIO_VMEM) DI(VIO_VMEM) Pull Up 1.5M DI(VIO_VMEM) Pull Down 1.5M DO(VIO_VMEM) DI(VIO_VMEM) DIO(VIO_VMEM) AI Pull Down 1.5M DI(VIO_VMEM) Pull Down 1.5M DO(VIO_VMEM) Power-on and reset Software reset, reset all applications when SW_RESETn = 0 Supply monitoring for multimedia processors. Interruption for high temperature warning Multimedia processor Resetn Sleep mode from multimedia processor Request of master clock from modem part Request to master clock oscillator Clock for Main I2C interface SDA for Main I2C interface 26 MHz, 13 MHz or 19.2 MHz from modem 32 kHz input 32 kHz to multimedia processor
J2 J3 H6 C1 B2 J6 H7 D2 A1 K3
VDDOK PORn PWREN TCXO_EN REQUEST_MC SCL SDA MASTER_CLK CLK32K_IN CLK32K
www..com
Rev3
7/72
www..com
3 Ball information
STW4810
STW4810 balls function
Ball name Ball type Description
Table 2.
Ball
Regulator balls A4 B4 A2 B3 A3 C4 A5 D9 D10 B10 C9 C10 D8 A10 C7 A7 A8 A6 B6 USB balls C2 K8 IT_WAKE_UP USBOEn DO(VBAT-DIG) DIO(VIO_VMEM) Pull Down 1.5M DIO(VIO_VMEM) Pull Down 1.5M Interrupt to modem for wake-up due to USB plug Output enable of the differential driver in the USB mode Data input in the USB transmit mode, positive data input the single-ended transmit mode, or TXD in UART mode Single-ended zero input in the USB transmit mode, negative data input in the single-ended transmit mode, or RXD in the UART mode Differential receiver output Positive data line in the USB mode, or serial data input in the UART mode Negative data line in the USB mode, or serial data output in the UART mode. ID ball of the USB detector used for protocol identification. VBAT_VIO_VMEM VMINUS_VIO_VMEM VLX_VIO_VMEM VIO_VMEM VBAT_VCORE VMINUS_VCORE VLX_VCORE VCORE VBAT_VPLL_ANA VANA VPLL VAUX VBAT_VAUX VDDA-VBAT VSSA AIO AI VDDA-VBAT VSSA AIO AI VDDA-VBAT AO AO AO VDDA-VBAT Battery power supply for step down VIO_VMEM Ground for step down VIO_VMEM BUCK of step down VIO_VMEM VIO_VMEM Feed back input Battery power supply for step down VCORE Ground for step down VCORE BUCK of step-down VCORE VCORE sense Battery supply for VPLL, VANA VANA output VPLL output VAUX output Battery supply for VAUX
J7
USBVP
J8
USBVM
DIO(VIO_VMEM) Pull Down 1.5M DO(VIO_VMEM) AIO(VUSB) AIO(VUSB) AI(VBAT-USB)
K7 E9 E10 E8
USBRCV DP DN ID
8/72 www..com
Rev3
www..com
STW4810
Table 2.
Ball H10 J10 G10 F10 G9 H9 H8 CP CN VBUS VUSB USBSCL USBSDA USBINTn
3 Ball information
STW4810 balls function
Ball name Ball type AIO(VBUS) AIO(VBUS) AIO(VBUS) AIO DI(VIO_VMEM) DIO(VIO_VMEM) DO(VIO_VMEM) Description C plus flying capacitor (VBUS level 4.4 to 5.25) C minus flying capacitor (VBUS Level) USB cable supply (VBUS Level) Decoupling capacitor for USB internal regulator Clock for dedicated USB I2C SDA for dedicated USB I2C Interrupt to multimedia processor for USB or accessory plug
SD MMC balls CMD direction. - "high": CMD signal from processor to card - "Low": CMD signal from card to processor DATA0 direction - "high": DATA0 signal from processor to card - "Low": DATA0 signal from card to processor DATA2 direction - "high": DATA2 signal from processor to card - "Low": DATA2 signal from card to processor DATA(3,1) direction - "high": DATA(3,1) signal from processor to card - "Low": DATA(3,1) signal from card to processor Host clock, between processor and STW4810, to the card (processor clock). Host feedback clock between STW4810 and processor, to re-synchronize data in processor. Bidirectional command/response signal between processor and STW4810. Bidirectional data0 between processor and STW4810 Bidirectional data [3:1] between processor and STW4810.
G3
MCCMDDIR
DI(VIO_VMEM) Pull Down 1.5M
K2
MCDAT0DIR
DI(VIO_VMEM) Pull Down 1.5M
K9
MCDAT2DIR
DI(VIO_VMEM) Pull Down 1.5M
H4
MCDAT31DIR
DI(VIO_VMEM) Pull Down 1.5M
G2
MCCLK
DI(VIO_VMEM) Pull Down 1.5M DO(VIO_VMEM) DIO(VIO_VMEM) Pull Up 1.5M DIO(VIO_VMEM) Pull Up1.5M DIO(VIO_VMEM) Pull Up 1.5M
H5
MCFBCLK
H1 K1 H2 H3 J1
MCCMD MCDATA0
MCDATA[3:1]
www..com
Rev3
9/72
www..com
3 Ball information
STW4810
STW4810 balls function
Ball name LATCHCLK CLKOUT CMDOUT DATAOUT0 Ball type DI(VMMC) Pull Down 1.5M DO(VMMC) DIO(VMMC) Pull Up 1.5M DIO(VMMC) Pull Up 1.5M DIO(VMMC) Pull Up 1.5M VDDA-VBAT AIO Description Host feedback clock to STW4810, to resynchronize data in processor. Host clock, between STW4810 and card (processor clock). Bidirectional command/response signal between STW4810 and processor. Bidirectional data0 between STW4810 and card Bidirectional data[3:1] between STW4810 and card. Battery supply for VMMC VMMC supply output
Table 2.
Ball F3 G1 F2 E1 F1 E3 E2 J4 K5
DATAOUT[3:1] VBAT_MMC VMMC
Other balls J5 K6 B9 D3 B1 B7 B8 C5 F8 G8 K10 GPO1 GPO2 "Reserved" AO AO G General purpose output General purpose output To be connected to ground
"Reserved"
O
To be left open
10/72 www..com
Rev3
www..com
STW4810
4 Functional description
4
4.1
Functional description
Introduction
The STW4810 integrates all the power supplies for a multimedia processor as well as memories and peripherals:

Two switched mode power supply regulators: one for the multimedia processor core, one for multimedia processor I/Os and memories Three low-drop output regulators for multimedia processor analog supplies (PLL and others) and auxiliary components USB OTG FS/LS physical interface MMC card power supplies and level shifters Multimedia processor supply monitoring / power-on reset and power supply alarms / interrupt management Two serial I2C communication interfaces; one to control the devices (SDA, SCL) and one to control the USB (USBSDA, USBSCL).
4.2
Digital control module
This module describes the interfaces used to program the device and the related registers.
4.2.1
State machine
Description of each states: (Figure 3.) OFF: In this mode the STW4810 is switched off. Off is when PON=0, when battery level is under 2.4 V or when thermal shutdown is activated. There is no multimedia processor power supply. The only active cell is the USB cable detection and VBAT level detection. OSC_START: Oscillator is enabled and the power up module is waiting for the rising edge of the internal signal OSC_OK to start power up sequence. This state duration is 300 s. START_BIAS: Bias, reference and thermal shut-down are enabled, a counter is activated to wait for rising edge of internal signals PDN_regulators. This state duration has a typical value of 7.77 ms and a worst case value of 9.46 ms. START_PM: after a 1 ms wait, multimedia processor power supplies are available (VIO_VMEM, VCORE, VPLL, and VANA). The device can allow I2C communication, output power supply monitoring and application (USB,SD/MMC). OFF2: STW4810 is waiting for the 32 kHz multimedia processor signal. This state has an indeterminate duration. If 32kHz is present during the states describes above, it has no effect. The 32 kHz signal is taken into account by STW4810 only when the `VDDOK' ball is high, that is at the end of START_PM state. RESET: STW4810 forces a reset during 10*32 kHz period before setting PORn high. INT_OSC: The STW4810 can work without MASTER_CLK via its internal oscillator. The device waits for an external clock detection before switching to the external clock. When receiving a rising edge on PWREN ball (coming from multimedia processor) or on TCXO_EN ball (coming from modem), STW4810 answers by asserting to "1" the REQUEST_MC ball. STW4810 remains in internal oscillator mode until it receives the external clock signal on MASTER_CLK ball.
www..com
Rev3
11/72
www..com
4 Functional description
STW4810
EXT_CLK: When MASTER_CLK is detected, the STW4810 uses this clock as reference and switches off its internal oscillator to save quiescent. MASTERCLK should remain connected up to SLEEP mode. SLEEP: SLEEP mode is required by multimedia processor by setting a PWREN at low level. Then VDDOK is forced to 0, regulators (VCORE, VIO_VMEM) switch to sleep mode and wait for PWREN at high level (Figure 4). WAKE-UP: From SLEEP mode, the multimedia processor requests to switch back to Normal mode. Thus the device restarts its internal oscillator and then switches regulators from sleep to normal mode and informs multimedia processor with VDDOK at high level (Figure 4).
Note:
By default VAUX is in stand by mode, pdn_vaux = 0 (Table 17). It can be programmed in normal mode only by asserted pdn_vaux bit to "1".
Figure 3. Start-up timing
OFF VBAT PON ball 300s PDN__OSC PDN_regulators VDDOK ball 10*(1/32KHz) CLK32K_IN ball PORn ball PWREN ball (*) RESET START_BIAS START_PM 7.77ms (9.46ms wc) 1mS 9.38mS (11mS wc)
Internal_OSC
MASTER_CLK ball
TCXO_EN ball
REQUEST_MC ball
"or"
OFF2
RESET
INT_OSC
VPLL / VIO_VMEM VCORE Voutput(s) ball
CLK32K ball Delays are worst case maximum delays (*) If 32 Khz available before VDDOK signal rising edge, OFF2 state duration is null
12/72 www..com
Rev3
www..com
STW4810
4 Functional description
All regulators are started with PDN_regulators but can be switched off from the beginning or during application by software (Table 26) . Figure 4. Switching POWER to sleep timing
HPM PWREN Sleep regulators VDDOK PDN_regulators CLK32K PDN_intOSC int_OSC _detect REQUEST_MC Internal_OSC MASTER_CLK SLEEP ~100s HPM
Registers reset
In the event of a hardware reset coming from the modem, PON ball set to "0", all registers are reset at initial value when PON ball goes back to "1" level. A software reset from multimedia processor of STW4810, through SW_RESETn ball set to "0", reset all registers except power control register (at address 1E & 1F).
Main clock oscillator control
REQUEST_MC is an OR output gate between PWREN (coming from multimedia processor) and TCXO_EN (coming from modem supply), it is synchronized on 32 kHz, except during power-up where PWREN is masked and considered as high. REQUEST_MC enabled or disabled the master clock oscillator device.
www..com
Rev3
13/72
www..com
4 Functional description
STW4810
4.2.2
POWER OFF / VDDOK
In case of VDDOK falling edge due to under voltage on VCORE or VIO_VMEM detected, or `it_twarn' bit set to "1" (Table 17), then multimedia processor is reset (PORn low during a minimum time of 312.5 s) and restarted with no time-out. (see Figure 5). In case of VDDOK falling edge because PWREN balls equals "0", there is no reset (PORn still high). In case of PON falling edge (STW4810 switched off from modem) multimedia processor is also reset with no time-out. We consider that clean switch off between modem and multimedia processor is done by software directly. VDDOK block diagram
Digital block & & VDDOK
Figure 5.
PWREN
vcore_monitor vio_monitor
it_twarn mask_twarn register reset after read operation or PON falling edge or PORN_VBAT.
Reg status
Under voltage detection VDDOK Operating voltage threshold value reached
PORn 312.5 s (10* 32 Khz)
4.2.3
SLEEP mode
STW4810 goes into SLEEP mode by different ways. Whether VCORE, VIO_VMEM and VAUX are programmed to SLEEP mode or not is indicated in Table 26. Taking in account the bit programming from Table 26, SLEEP mode is summarized with the following formula: SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1, (Vxxx = VCORE or VIO_VMEM or VAUX)
14/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.2.4
I2C Interface
The device supports two I2C bus interfaces. One main interface (SDA,SCL) controls power management and all programmable functions, the second interface (USBSDA, USBSCL) is dedicated to USB control. STW4810 allows to work with only the main I2C interface to control all the functions, including the USB, via USB_I2C_CTRL bit of power control register (Table 26). I2C Interface is used to read status information from inside the device. Flags, interrupt and write registers are used to configure the device functions (threshold, clock division, output voltage, etc....). By default, the main I2C interface (SCL,SDA) controls the main registers and USB I2C interface (USBSCL, USBSDA) controls USB registers. Figure 6. I2C interface block diagram
SCL SDA usb_i2c_ctrl SCL MUX SDA USBSCL USBSDA
Main registers
SCL or USBSCL SDA or USBSDA USB registers
Both I2C are configured as slave serial interface compatible with I2C registered trademark of Phillips Inc. (version 2.1).
I2C interface description
STW4810 I2C is a slave serial interface with a serial data line (SDA or USBSDA) and a serial clock line (SCL or USBSCL): - - - - SCL / USBSCL: input clock used to shift data SDA / USBSDA: input/output bidirectional data transfers One filter to reject spikes on the bus data line and preserve data integrity Bidirectional data transfers up to 400kbit/s (Fast-mode) via SDA or USBSDA signal
It is composed of:
The SDA or USBSDA signal contains the input/output control and data signals that are shifted in the device, MSB first. The first bit must be high (START) followed by the Device ID (7 bits) and Read/Write bit control (1 indicates read access, a logical 0 indicates a write access). - - Device ID in write mode: 5Ah (01011010) Device ID in read mode: 5Bh (01011011)
Then STW4810 sends an acknowledge at the end of an 8 bits transfer. The next 8 bits correspond to the register address followed by another acknowledge. The 8 bits data field is sent last, followed by a last acknowledge.
www..com
Rev3
15/72
www..com
4 Functional description
STW4810
Table 3.
b7 AdrID6
Device ID
b6 AdrID5 b5 AdrID4 b4 AdrID3 b3 AdrID2 b2 AdrID1 b1 AdrID0 b0 R/W
Table 4.
b7 RegADR7
Register address
b6 RegADR6 b5 RegADR5 b4 RegADR4 b3 RegADR3 b2 RegADR2 b1 RegADR1 b0 RegADR0
Table 5.
b7 DATA7
Register data
b6 DATA6 b5 DATA5 b4 DATA4 b3 DATA3 b2 DATA2 b1 DATA1 b0 DATA0
I2C interface modes
Figure 7. Control interface: I2C format
DEVICE ADDRESS ACK ACK REGn ADDRESS REGn Data In ACK
WRITE SINGLE BYTE
01011010
START STOP
RANDOM ADDR READ SINGLE BYTE
DEVICE ADDRESS
ACK ACK REGn ADDRESS
DEVICE ADDRESS
ACK REGn Data Out
NO ACK
01011010
START
01011011
START
RANDOM ADDR READ MULTI BYTE DEVICE ADDRESS ACK ACK REGn ADDRESS ACK DEVICE ADDRESS ACK Reg n Data Out ACK
01011010
START
01011011
START m+1 data bytes
NO ACK Reg n + m Data Out STOP
Figure 8.
Control interface: I2C timing
SDA USBSDA SCL USBSCL
Stop
tbuf thd_sta tf tlow tr thigh thd_dat tsu_dat
tsu_sta thd_sta tsu_sto
Start
Start repeated
Stop
16/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.2.5
Control registers
Control registers have the following functions: - - - - Table 6.
Address 00h to 10h 11h 12h to 1Dh 1Eh to 1Fh 20h
Select level of regulation for multimedia processor supply Control the USB interface Control the SD/MMC/SDIO interface Control the state machine Register general information
Comment USB Registers (Table 8 to Table 16) SD MMC Control register (Table 17) Test registers Power control registers (Table 18 to Table 26) twarning register (Table 27) SDA / SCL SDA / SCL I2C control USBSDA / USBSCL or SDA / SCL (1) SDA / SCL
1. Controlled by USB_I2C_CTRL bit of Power control register (Table 26)
Table 7.
Register summary
Addr. 00h 7 1 0 0 0 6 0 0 0 1 5 0 0 0 0 oe_int_ en vbus_ drv id_float id_float id_float id_float 4 0 0 1 0 3 0 0 0 0 2 0 1 0 0 1 1 0 0 0 0 1 0 0 0
Register Vendor ID
01h 02h Product ID 03h USB control register 1 USB control register 2 USB interrupt source USB interrupt latch 04h 05h 06h 07h 08h 0Ah 0Bh
Not used uart_en vbus_ chrg cr_int cr_int cr_int cr_int Not used pdn_ vaux vbus_ dischrg bdis_ acon bdis_ acon bdis_ acon bdis_ acon
bdis_ not used dat_se0 acon_en id_gnd dn_hi dn_hi dn_hi dn_hi
suspend speed dp_ pullup
dn_ dp_ dn_ pulldown pulldown pullup id_gnd_ forced id_gnd_ forced id_gnd_ forced id_gnd_ forced dp_hi dp_hi dp_hi dp_hi
sess_vld vbus_vld sess_vld vbus_vld sess_vld vbus_vld sess_vld vbus_vld usb_en not used pdn_ vmmc mask_ twarn
USB interrupt mask 0Ch false 0Dh USB interrupt mask 0Eh true 0Fh USB EN 10h
SD MMC control
11h
it_warn
monitori ng_vio_ vmem_ vcore
gpo2
gpo1
sel_vmmc<1:0>
Twarning
20h
Not used
www..com
Rev3
17/72
www..com
4 Functional description
STW4810
Register Power control Register Power control
Addr. 1Fh Addr. 1 Eh
15
14
13
12
11
10
9
8
Not used 7 6 reg address 3 bits 5 4 3 2
reg address 2 bits 1 0 ena write
data din/dout 4 bits
REGISTERS CONTROLLED BY I2C USB BUS
The registers described in this chapter are controlled through the USB serial I2C interface, USBSCL and USBSDA balls. These registers could also be controlled through the main I2C interface, SCL and SDA balls by setting to "1" USB-I2C_CTRL bit in Power control register (Table 22). Table 8. USB register address
Register Vendor ID Product ID USB Control Register 1 USB Control Register 1 USB Control Register 2 USB Control Register 2 USB Interrupt Source Not used USB Interrupt Latch USB Interrupt Latch USB Interrupt Mask False USB Interrupt Mask False USB Interrupt Mask True USB Interrupt Mask True USB_EN R/W R/W R/W R/W R/W R/W R/W R R R/W R/W R/W R/W R Type
Address 00h - 01h 02h - 03h 04h set 05h clearh 06h set 07h clearh 08h 09h 0Ah set 0Bh clearh 0Ch set 0Dh clearh 0Eh set 0Fh clearh 10h
Note:
A bit of register 1 is set at "1" by writing a "1" at address 04h, is reset at "0" by writing a "1" at address 05h. This is also applicable for USB Control Register 2 (06h, 07h), USB Interrupt register (0Ah,0Bh), USB Interrupt Mask False register (0Ch, 0Dh) and USB Interrupt Mask True register (0Eh, 0Fh). Writing "0" at any address has not effect on the content of any register.
Table 9. Vendor ID and Product ID: Read only
Name Vendor ID 01h 02h Product ID 03h 40h 04h 10h Address 00h Register Value 83h
18/72 www..com
Rev3
www..com
STW4810 USB control register 1
Table 10.
4 Functional description
USB control register 1 (address = 04h set and 05h clearh)
7 Not used 6 uart_en R/W 5 oe_int_ en R/W 4 3 2 dat_se0 R/W 1 suspend R/W 0 speed R/W
Register Bit name Type
bdis_ not used acon_en R/W -
Bits 6 5
Name uart_en oe_int_en
Value 0 1 0 1 0 1 0 1 0 1
Settings Inactive UART logic buffers are enabled Inactive Allow to send interruption through USBOEn Inactive (default) Enable A-device to connect if B-device disconnect detected: VP_VM USB mode DAT_SE0 USB mode Inactive (default) Put transceiver in low power mode Set rise and fall times of transmit Low Speed Full Speed
Default 0 0
4
bdis_acon_en
0
2
dat_se0
0
1
suspend
0
0
speed
0 1
0
www..com
Rev3
19/72
www..com
4 Functional description
STW4810
USB control register 2
Table 11. USB Control Register 2 (Address = 06h set and 07h clearh)
7 vbus_ chrg R/W 6 vbus_ dischrg R/W 5 vbus_ drv R/W 4 id_gnd R/W 3 2 1 dn_ pullup R/W 0 dp_ pullup R/W
Register Bit name Type
dn_ dp_ pulldown pulldown R/W R/W
Bits 7
Name vbus_chrg
Value 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Settings Inactive Charge VBUS through a resistor Inactive Discharge VBUS through a resistor to ground. Inactive Provide power to VBUS Inactive Connect ID ball to ground Inactive Connect DN pull-down Inactive Connect DP pull-down Inactive Connect DN pull-up Inactive Connect DP pull-up
Default 0
6
vbus_dischrg
0
5
vbus_drv
0
4
id_gnd
0
3
dn_pulldown
0
2
dp_pulldown
0
1
dn_pullup
0
0
dp_pullup
0
20/72 www..com
Rev3
www..com
STW4810 USB interrupt source register
Table 12. USB Interrupt source register (address = 08h)
7 cr_int R 6 bdis_ acon R 5 id_float R 4 dn_hi R 3 id_gnd_ forced R 2
4 Functional description
Register Bit name Type
1
0
dp_hi R
sess_vld vbus_vld R R
Bits 7 cr_int
Name
Value 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Settings Inactive DP ball is above the carkit interrupt threshold Inactive Set when bdis_acon_en is set, and transceiver asserts dp_pullup after detecting B-device disconnect. Inactive ID ball floating Inactive DN ball is high Inactive ID ball grounded Inactive DP asserted during SRP, Session valid comparator threshold <0.8V or >4.4V 0.8V < Session valid comparator threshold < 4.4V A-device VBUS valid comparator threshold <4.4V A-device VBUS valid comparator threshold >4.4V
Default 0
6
bdis_acon
0
5
id_float
0
4
dn_hi
0
3
id_gnd_forced
0
2
dp_hi
0
1
sess_vld
0
0
vbus_vld
0
USB latch register
Table 13. USB interrupt latch registers (address = 0Ah set and 0Bh clearh)
7 cr_int 0 R/W 6 bdis_ acon 0 R/W 5 id_float 0 R/W 4 dn_hi 0 R/W 3 id_gnd_ forced 0 R/W 2 dp_hi 0 R/W 1 0
Register Bit name Default Type
sess_vld vbus_vld 0 R/W 0 R/W
USB interrupt latch register bits indicate which sources have generate an interrupt.
www..com
Rev3
21/72
www..com
4 Functional description
STW4810
USB interrupt mask false register
Table 14. USB interrupt mask false register (address = 0Ch and 0Dh)
7 cr_int 0 R/W 6 bdis_ acon 0 R/W 5 id_float 0 R/W 4 dn_hi 0 R/W 3 id_gnd_ forced 0 R/W 2 dp_hi 0 R/W 1 0
Register Bit name Default Type
sess_vld vbus_vld 0 R/W 0 R/W
USB interrupt mask false register bits enable transition from true to false.
USB interrupt mask true register
Table 15. USB interrupt mask true register (address = 0Eh and 0Fh)
7 cr_int R/W 6 bdis_ acon R/W 5 id_float R/W 4 dn_hi R/W 3 id_gnd_ forced R/W 2 dp_hi R/W 1 0
Register Bit name Type
sess_vld vbus_vld R/W R/W
USB interrupt mask true register bits enable interrupts on transition from false to true.
USB EN register
Table 16. USB EN register (address = 10h)
7 6 5 Not used 4 3 2 1 usb_en R/W 0 not used -
Register Bit name Type
Bits 1
Name usb_en
Value 0 1 Inactive Enable USB PHY
Settings
Default 0
22/72 www..com
Rev3
www..com
STW4810 REGISTERS CONTROLLED BY MAIN I2C BUS
4 Functional description
IC controlled registers are controlled through the main serial I2C interface, SCL and SDA balls.
SD MMC control register
Table 17. SD MMC control register (11h)
7 pdn_ vaux R/W 6 5 monitori ng_vio_ vmem_ vcore R(1) 4 3 2 1 0 pdn_ vmmc R/W
Register
Bit name
it_warn
gpo2
gpo1
sel_vmmc<1:0>
Type
R(1)
R/W
R/W
R/W
1. These bits are reset (0) after reading
Bits 7
Name pdn_vaux
Value 0 1 0 1 0 1 0 1 0 1 00 01 10 11 0 1 Inactive Enable LDO vaux
Settings
Default 0
6
it_warn monitoring_vio_ vmem_vcore gpo2
Below temperature threshold Above temperature threshold Outputs in the good range Outputs lower than expected on vio_vmem or vcore Output GPO2 HZ Output GPO2 Low Output GPO1 HZ Output GPO1 low 1.8V selection 1.8V selection 2.85V selection 3V selection Inactive Enable SD/MMC or SDIO function.
0
5
0
4
0
3
gpo1
0
[2:1] sel_vmmc<1:0>
00
0
pdn_vmmc
0
In Flash OTP two registers allow to program STW4810 energy management part. These two registers are at address 1E and 1F and must be programmed with 1F register first followed by 1E register.
www..com
Rev3
23/72
www..com
4 Functional description
STW4810
Power control register at address 1Eh
Table 18. Power control register - General information (Address = 1Eh)
7 6 5 4 3 2 1 0 EN R/W
Register Bit name Type
reg address 3 bits LSB's R/W
data din/dout 4 bits R/W
Bits
Name
Value
Settings See Table 20 "Address" column (LSB's). See Table 20 control register
Default 0 0 0
[7:5] reg address 3 bits [4:1]
0
data din/ dout 4 bits EN 0 1
Read enabled Write enabled
Power control register at address 1Fh
Table 19. Power control register - General information (Address = 1Fh)
15 14 13 12 11 10 9 8
Register Bit name Type
Not used
reg address 2 bits MSB's R/W
Bits [9:8]
Name reg address 2 bits MSB's
Value
Settings See Table 20 "Address" column (MSB's).
Default 0
Power control register mapping
Table 20. Power control register mapping
Address 1Eh reg address Not used 15 14 13 12 11 10 2 bits MSB's 9 8 7 3 bits LSB's 6 5 data din/dout 4 bits 4 3 2 1 EN 0 Test purpose Setting See Table 21 to Table 26 Test purpose Comment
Address 1Fh
00h to 04h 05h to 0Ah 0Bh to 1E
24/72 www..com
Rev3
www..com
STW4810
Caution: Only the latest value written in register at address 1E/1F can be read.
4 Functional description
Power control register at address 05h
Table 21. Power control register at address 05h
Address 1Fh 15 14 13 12 11 10 9 0 8 0 7 1 6 0 5 1 4 Address 1Eh 3 2 1 0 EN
Not used
vcore_sel [3:0]
Bits
Name
Value 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 = 1.00V = 1.05V = 1.10V = 1.15V = 1.20V (default) = 1.22V = 1.24V = 1.26V = 1.28V = 1.30V = 1.32V = 1.34V = 1.36V = 1.38V = 1.40V = 1.50V
Settings
Default
[4:1]
vcore_sel [3:0]
0100
www..com
Rev3
25/72
www..com
4 Functional description
STW4810
Power control register at address 06h
Table 22. Power control register at address 06h
Address 1Fh 15 14 13 12 11 10 9 0 8 0 7 1 6 1 5 0 4 vpll_sel [0] Address 1Eh 3 2 1 usb_ i2c_ctrl 0 EN
Not used
vaux_sel <1:0>
Bits
Name vpll_sel[1:0] on 06h and 07h address
Value 00 01 10 11 00 01 10 11 0 1 = 1.05V = 1.2V = 1.3V = 1.8V = 1.5V = 1.8V = 2.5V = 2.8V
Settings
Default
4
11
[3:2] vaux_sel[1:0]
00
1
usb_i2c_ctrl
USB I2C interface controls USB registers Main I2C interface controls USB registers
0
Power control register at address 07h
Table 23. Power control register at address 07h
Address 1Fh 15 14 13 12 11 10 9 0 8 0 7 1 6 1 5 1 4 en_vpll Address 1Eh 3 not used 2 en_ vcore 1 vpll_sel [1] 0 EN
Not used
Bits 4
Name en_vpll
Value 0 1 0 1 Disabled / VPLL = OFF
Settings
Default 1
Enabled / VPLL = ON(1) Disabled / VCORE = OFF Enabled / VCORE = ON(1) See Table 22
2 1
en_vcore vpll_sel[1]
1 -
1. No soft start feature at supply enabled after a disabled/enabled sequence
26/72 www..com
Rev3
www..com
STW4810 Power control register at address 08h
Table 24. Power control register at address 08h
Address 1Fh 15 14 13 12 11 10 9 0 8 1 7 0 6 0 5 0 4 Address 1Eh 3
4 Functional description
2 en_ vana
1 not used
0 EN
Not used
en_clk en_mo squarer nitoring
Bits 4
Name en_clock_squarer
Value 0 1 0 1 0 1
Settings Disabled Enabled (sine wave signal input) Disabled / MONITORING = OFF Enabled / VCORE & VIO_VMEM monitoring = ON Disabled / VANA = OFF Enabled / VANA = ON
Default 0
3
en_monitoring
1
2
en_vana
1
Power control register at address 09h
Table 25. Power control register at address 09h
Address 1Fh 15 14 13 12 11 10 9 0 8 1 7 0 6 0 5 1 4 vaux_ sleep Address 1Eh 3 not used 2 1 0 EN
Not used
vio_ vcore_ vmem_ sleep sleep
Bits
Name
Value
Settings When PWREN is low: VAUX stays in normal mode VAUX goes in sleep mode (default) When PWREN is low: VIO_VMEM stays in normal mode VIO_VMEM goes in sleep mode When PWREN is low: VCORE stays in normal mode VCORE goes in sleep mode
Default
4
vaux_sleep
0 1
1
2
vio_vmem_sleep
0 1
1
1
vcore_sleep
0 1
1
www..com
Rev3
27/72
www..com
4 Functional description
STW4810
Power control register at address 0Ah
Table 26. Power control register at address 0Ah
Address 1Fh 15 14 13 12 11 10 9 8 7 6 5 4 vaux_ force_ sleep Address 1Eh 3 not used 2 1 0
Not used
0
1
0
1
0
vio_ vcore_ vmem_ force_ force_ sleep sleep
EN
Bits 4
Name vaux_force_sleep
Value 0 1 0 1 0 1
Settings 0: VAUX in normal mode 1: VAUX goes in sleep mode (for any PWREN level) 0: VIO_VMEM in normal mode 1: VIO_VMEM goes in sleep mode (for any PWREN level) 0: VCORE stays in normal mode 1: VCORE goes in sleep mode (for any PWREN level)
Default 0
2
vio_vmem_force_ sleep vcore_force_slee p
0
1
0
Twarning register
Table 27. Twarning register (Address = 20h)
7 6 5 4 Not used 3 2 1 0 mask_ twarn R/W
Register Bit name Type
Bits
Name
Value 0 1
Settings Inactive Mask TWARN interruption (it_twarn bit) through VDDOK
Default
0
mask_twarn
0
28/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.2.6
IT generation
STW4810 has three interrupt balls: IT_WAKE_UP: with only VBAT supply, no other supply available, when a USB cable is plugged this interrupt is activated to wake up the host or the modem, depends of application (active low). USBINTn: This interrupt ball is dedicated to USB protocol and sent to multimedia processor VDDOK: This ball has two functions: - When high, it indicates that VIO_VMEM and VCORE output voltages are within the right range and that the device internal temperature is below the maximum allowed temperature. - When low, it indicates that output regulators (VCORE or VIO_VMEM) are not regulated properly or PWREN = "0", or that the temperature is above the allowed threshold (see Thermal shut-down section). The interruption source in the application register (address 11h) needs to be checked.
4.2.7
Clock switching and control
This block generates the clock used by the DC/DC converter (USB charge pump, step-down VIO_VMEM and step-down VCORE). STW4810 is able to sustain the master clock frequencies of 26 MHz, 19.2MHz and 13 MHz. It can also sustain dedicated MASTER_CLK signal in the frequency range of 750KHz to 1MHz. If the clock is not detected the internal oscillator is automatically selected.
Note:
Figure 9.
When present the Master clock should remain connected up to Sleep mode.
Clock switching between master and internal clock (1)
internal clock transition external clock
* Phase delay is less than 90 between int and ext clock
PON INT_OSC INT_OSC_OK MASTER_CLK_OK Third rising edge after switching PDN_INT_OSC CONTROL_SWITCH
MASTER_DIV_CLK STEP_DOWN_CLK
www..com
Rev3
29/72
www..com
4 Functional description
STW4810
4.3
Power management module
STW4810 includes several regulators that supply the multimedia processor and its peripherals. All regulators can work in different modes depending on the processor needs. When the STW4810 is in `Low Current Mode'", the output current is reduced to save energy via the lower quiescent current. The nominal mode is called high power mode (HPM). The mode is selected by PWREN signal according to both multimedia processor and STW4810 state. When PWREN = "0", sleep mode is selected. HPM is selected as default when PWREN = "1". Each regulator has a dedicated battery power supply. It can be powered down by a signal called PDN_regulator_name as shown in the Figure 2: STW4810 block diagram. In this mode, the regulator is switched off and only a leakage current is present (max. 1A). VCORE, VAUX and VPLL output voltages are programmable, through main I2C interface, using the "Regulator"_SEL[x:0] bits of the POWER CONTROL registers (Table 21 to Table 26). In addition, an output current limitation prevents high current delivery in case of output short circuit. All multimedia processor power supplies have the same soft start to prevent leakage in the multimedia processor device during the start-up phase. There is an exception with VAUX which can be started independently.
4.3.1
Bandgap, biasing and references
Figure 10. Block diagram of biasing and references of the device
BG VOLTAGE REFERENCE CONTROL All internal references All internal biasing BIAS GENERATOR VREF_18
4.3.2
VCORE regulator: DC/DC STEP- DOWN regulator
This regulator drives the core of the multimedia processor. VCORE is a DC/DC step-down regulator that generates the regulated power supply with very high efficiency. The 15 voltage levels enable dynamic voltage and frequency scaling suitable for any supply voltage of CMOS process, they also follow the processor process roadmap. The regulated output voltage levels are adjustable by the power control registers (Table 21), via the main I2C interface (SDA, SCL). The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to generate the switching clock of the SMPS. When this clock is not available, regulators run the internal RC oscillator.
30/72 www..com
Rev3
www..com
STW4810
Main features:

4 Functional description
Programmable output voltage, 15 levels from 1.0 V to 1.5 V (VCORE_SEL [3:0] bits of Power control register - Table 21) 3 power domains: - - `Normal mode' when multimedia processor is in run mode, 600 mA full load `Low current mode' when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to normal mode. The regulator is in `low current mode' when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to run mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range.
Note:
The definition of SLEEP mode is given in section 4.2.3: SLEEP mode. `Power Down mode' or `Standby Mode' when regulator is switched off, no consumption (EN_VCORE bit of Power control register - Table 27) Soft start circuitry at start up, from power off to normal mode, when PON ball changes from "0" to "1". Default setting defined by start-up configuration.
4.3.3
VIO_VMEM regulator: DC/DC step- down regulator
VIO_VMEM step-down regulator has the same structure than VCORE. The VIO_VMEM regulator supplies the IOs of the multimedia processor and its peripherals. This regulator can be used to supply the memories working with the multimedia processor, such as DDR-SDRAM. A switched mode power supply - voltage down converter is used to generate the 1.8 V regulated power supply with very high efficiency. The master clock (13, 19.2 or 26 MHz) is automatically detected, squared and divided to generate the SMPS switching clock. When this clock is not available, regulators can run the internal RC oscillator. Main features

Fixed 1.8 V output voltage Two power domains: - - `Normal mode' when multimedia processor is in run mode - 600 mA full load `Low current mode' when multimedia processor is in sleep mode, 5 mA current capability. Fast switching from low current to normal mode. The regulator is in `low current mode' when multimedia processor is in sleep mode. PWREN signal indicates that the multimedia processor is about to switch to run mode. VDDOK signal indicates to the multimedia processor that all supplies are in the specified range.
Note:
The definition of SLEEP mode is given in 4.2.3: SLEEP mode section. Soft start circuitry at start up, from power off to normal mode, when PON ball changes from "0" to "1". Default setting defined by start-up configuration.
www..com
Rev3
31/72
www..com
4 Functional description
STW4810
4.3.4
VPLL
This LDO is dedicated to the multimedia processor PLL (1.05 V, 1.2 V, 1.3 V, 1.8 V) power supply with 10 mA max full load (Power Control Registers - Table 26 and Table 27). Main features

Programmable output voltage, (VPLL_SEL[1:0] bits of power control register - Table 26 and Table 27) Two power domains: - - `Normal mode' 10 mA full load `Power Down mode' or `Standby Mode' when regulators are switched off and there is no power consumption (EN_VPLL bit of power control register - Table 27)

Soft start circuitry at start up, from power off to normal mode, when PON ball changes from "0" to "1". Default setting defined by start-up configuration.
4.3.5
VANA
This LDO is dedicated to the multimedia processor analogue function (2.5 V) power supply with 10 mA full load. Main features:

2.5 V output voltage, Two power domains - - `Normal mode' 10 mA full load `Power Down mode' or `Standby Mode' when regulators are switched off and there is no power consumption (EN_VANA bit of Power control register - Table 28),
Default setting defined by start-up configuration.
4.3.6
VAUX
This LDO is dedicated either to the multimedia processor input/output signals or to the auxiliary devices. Power supply values are 1.5 V,1.8 V, 2.5 V, 2.8 V with 150 mA full load and 0.5 mA in SLEEP mode. In case of 1.5 V on the output, this LDO can be supplied by using VIO_VMEM DC/DC converter (1.8 V). One pad feed-back is used. Main features:

Programmable output voltage, 4 levels (VAUX_SEL[1:0] bits of Power control register - Table 26) Three power domains: - - `Normal mode' when multimedia processor is in run mode, 150 mA full load `Low current mode' when multimedia processor is in sleep mode, 0.5 mA current capability. Fast switching from low current to normal mode.
Note:
Definition of SLEEP mode is given in 4.2.3: SLEEP mode section. - `Power down mode' or `standby mode' when regulator is switched off, no power consumption (PDN_VAUX bit of SD MMC control register - Table 17) Default setting defined by start-up configuration
32/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.3.7
Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drop below the threshold, the multimedia processor is reset. This feature can be desactivated by setting EN_MONITORING bit of Power control register (Table 28) to "0".
4.3.8
Power supply domains
Table 28 lists the register bits that control the different STW4810 supply domains for each supply.
Table 28.
Supply name VCORE VIO_VMEM VPLL VANA VAUX VMMC
Power supply domains
Supply domains Description Normal STEP-DOWN STEP-DOWN LDO LDO LDO LDO 15 values VCORE_SEL[3:0] 1.8 V 4 values VPLL_SEL[1:0] 2.5 V 4 values VAUX_SEL[1:0] 3 values SEL_VMMC[1:0] VAUX_SLEEP VAUX_FORCE_SLEEP Sleep VCORE_SLEEP VCORE_FORCE_SLEEP VIO_VMEM_SLEEP VIO_VMEM_FORCE_SLEEP EN_VPLL EN_VANA PDN_VAUX PDN_VMMC Power down EN_VCORE
Note:
More details on VMMC supply are given in Section 4.5
4.3.9
Thermal shut-down
A thermal sensor is used to monitor the die temperature.
As soon as the die temperature exceeds the thermal warning rising threshold 1, VDDOK ball goes to "0" and `it_warn' bit is set to "1" (SD MMC control register - Table 17). The IC turns back VDDOK ball to "1" and `it_warn' bit to "0" when the device temperature drops below the thermal warning falling threshold 1 of the thermal sensor. A second thermal detection level, thermal shutdown rising threshold 2, puts all STW4810 supplies OFF, the supplies goes back to ON state when the temperature reaches the thermal shutdown falling threshold 2. Thermal threshold values
Description Min Typ Max Unit
Table 29.
Thermal Warning Threshold 1 Rising threshold Falling threshold 134 117 140 123 149 131 C C
www..com
Rev3
33/72
www..com
4 Functional description
STW4810
Thermal threshold values
Description Min Typ Max Unit
Table 29.
Thermal Shutdown Threshold 2 Rising threshold Falling threshold 149 129 155 135 164 143 C C
Figure 11. Thermal threshold temperatures for `it_warn' bit and VDDOK ball
`it_warn' bit All supplies are turn "OFF" VDDOK ball Rising Warning Threshold 1 Rising Shutdown Temperature Threshold 2
4.4
USB OTG module
This transceiver complies with the USB specification:

Universal Serial Bus Specification Rev 2.0 On the Go supplement to the USB specification Rev 1.0-a Car kit Interface Specification (see: OTG transceiver specification rev0.92)
The USB OTG Transceiver has two modes: USB mode and UART mode. It includes:

Full and low speed transceiver (12 Mbit/s and 1.5 Mbit/s data rate) Support data line and VBUS pulsing session request Contains Host Negotiation Protocol (HNP) command and status register Charge pump regulator (5 V at 100 mA) to supply VBUS line of the USB cable VBUS Pull-up and pull-down resistors as defined by Session Request Protocol (SRP) VBUS threshold comparators VUSB LDO internal regulator which provides power supply for the bus driver and receiver. ID line detector and interrupt generator Dedicated IC serial control interface
34/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.4.1
Block diagram
Figure 12. USB OTG transceiver block diagram
VBAT_USB VBAT_DIG CLK VMINUS_DIG CP CN
USB_INTn
vbus_vld sess_vld dn_hi Interrupt dp_hi Control bdis_acon Register id_gnd_forced id_float cr_int usb_en usb_i2c_ctrl vbus_drv bdis_acon_en dn_pullup dp_pullup Control dn_pulldown Registers dp_pulldown id_gnd vbus_chrg vbus_dischrg speed uart_en dat_se0 oe_int_en suspend
REF
R_VBUS_SRP
R_VBUS_PD
CHARGE PUMP 5V - 100mA
vbus_drv
100 mA
VBUS RA_BUS_IN
VBUS_MONITOR VBUS > 4.4 V vbus_vld sess_vld
2V < VBUS < 4.4 V
vbus_chrg
VBUS < 0.8V
VBAT_USB
Gnd VUSB_LDO
vbus_dischrg vbus_session_end
VUSB
DP_MONITOR cr_int
DP
USBSCL
5.7 R
USBSDA
DP < [0.4 to 0.6] V
R
SCL
SDA
RXD RXD
TRANCEIVER
dn_pullup dp_pullup
RPU_DP
SW_RESETn
DAT_VP
Diff Tx
USBVM USBOEn SEO_VM OE_TP_INT
RPU_DN
USBVP
DP
out_diff_Rx Diff Rx suspend
RPD_DN USBRCV RCV DN RPD_DP
SINGLE ENDED DECODER
SE_DP VP dn_pulldown SE_DN
VM
VBAT_DIG
dp_pulldown
VBAT_USB
R
RID_PU 0.85*ID ID
Plug detect Management
IT_WAKE_UP
id_float sess_vld id_gnd
4.7 R
OR ID Detector
R
0.15*ID
id_gnd
www..com
Rev3
35/72
www..com
4 Functional description
STW4810
VBUS monitoring
These comparators monitor the VBUS voltage. They detect the current status of the VBUS line:

VBUS > 4.4 V means VBUS_VALID 2 VThese three bits generate an interrupt when active (see USB interrupt registers). VUSB LDO: Internal regulator which provides power supply for the bus driver and receiver. ID detector: This block detects the status of the ID line. It is capable of detecting three different states of line: ball is floating ID_FLOAT high, ball is tied to ground ID_GND high and ball ID is grounded via resistor. This detection generates interrupts (see USB interrupt registers). Transceiver: The driver can operate in several different modes. It can act as a classical lowspeed and full-speed differential driver, as two independent single-ended drivers or as a singleended driver in UART mode. This block contains one differential receiver for the USB mode of operation and two single-ended receivers for USB signaling and UART mode. DP monitor: This block is used to detect car kit peripheral (0.6 V on DP). Pull up and pull down resistor: Configurable integrated pull-up and pull-down resistor of data line and VBUS.
4.4.2
Modes and operations
Power modes
The transceiver power modes are:

Active power mode Suspended power mode Power down mode
In suspended power mode the differential transmitter and receiver are turned off to save power but the USB interface is still active (pull-up and pull-down on, VBUS on). In power down mode, only the serial interface is active and the transceiver is able to detect SRP. In power down mode, ID ball sensing can be turned on/off via a control bit in the control registers.
USB modes
The two transceiver modes are:

DAT_SEO mode (dat_se0 = 1 in USB control register 1 - Table 10) VP_VM mode (dat_se0 = 0 in USB control register 1 - Table 10)
36/72 www..com
Rev3
www..com
STW4810
4 Functional description
Data transmission The transceiver transmits USB data in the following conditions for USB control register 1 (Table 30, Table 31): uart_en=0; oe_int_en=0 Table 30. Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 0
Inputs USBVP 0 1 x 0 1 0 1 USBVM 0 0 1 0 0 1 1 DP 0 1 0 0 1 0 1 Outputs Comments DN 1 0 0 0 0 1 1 USBRCV Not used Not used Not used DIFF_RX DIFF_RX DIFF_RX DIFF_RX DAT_VP drives the level of DP SE0_VM drives the level of DN Single ended data (zero sent) Single ended data (1 sent) Force single ended zero
USB mode (DAT_SE0) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode)
Table 31.
Data transmission via USB control register 1 (DAT_SE0 mode) - Suspend = 1
Inputs USBVP 0 1 x 0 1 0 1 USBVM 0 0 1 0 0 1 1 DP 0 1 0 0 1 0 1 Outputs Comments DN 1 0 0 0 0 1 1 USBRCV not used not used not used 0 (off) 0 (off) Driver are suspended 0 (off) 0 (off) single ended data (zero sent) single ended data (1 sent) Force single ended zero
USB mode (dat_se0) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode)
If oe_int_en = 1 and suspend=1 (USB control register 1 - Table 10), the USBOEn ball becomes an output used to generate an IT to multimedia processor.
www..com
Rev3
37/72
www..com
4 Functional description
STW4810
The transceiver receives USB data in the following conditions: uart_en = 0 (USB control register 1); oe_int_en = 1 Table 32. Data receiver via USB control register 1
Inputs Suspend DP 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 DN 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 USBVP Diff rcv 1 1 0 Diff rcv 1 0 1 0 1 0 1 0 1 0 1 0 1 USBVM 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 1 USBRCV not used not used not used not used not used not used not used not used diff rcv 1 1 0 diff rcv 1 not used not used not used not used Outputs Comments
USB mode (dat_se0) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 1 (DAT_SE0 mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode) 0 (VP_VM mode)
UART mode
UART mode is entered by setting the `uart_en' bit to 1 (USB control register 1 - Table 10). The transceiver contains two digital logic level translators between the following balls:

TXD signal: from USBVM to DN RXD signal: from DP to USBVP
When not in UART mode the level translators are disabled.
38/72 www..com
Rev3
www..com
STW4810 VBUS monitoring and control
4 Functional description
The monitoring is made of three comparators that determine if the VBUS voltage is at a valid level for operation:
VBUS VALID: It corresponds to the minimum level on VBUS. Any voltage on VBUS below the threshold is considered to be a fault. During power-up, it is expected that this comparator output is ignored. VBUS SESSION VALID: This threshold is necessary for session request protocol to detect the VBUS pulsing. VBUS SESSION END: Session is ended. In this USB block, a B-device Session End threshold is defined within the range [0.2; 0.8] V. The reason for a low 0.2 V limit is that the leakage current could charge the VBUS up to 0.2 V (maximum).

When the A-device (default master) is power supplied and does not supply VBUS, it presents an input impedance RA_BUS_IN on VBUS of no more than 100 k If the A-device responds to . the VBUS pulsing method of SRP, then the input impedance RA_BUS_IN may not be lower than 40 k . When the A-device supplies power, the rise time TA_VBUS_RISE on VBUS to go from 0 to 4.4 V is less than 100 ms when driving 100 mA and with an external load capacitance of 10 F (in addition to VBUS decoupling capacitance). If VBUS does not reach this voltage within TA_VBUS_RISE maximum time, it indicates that the B-device is drawing more current that the A-device is capable of providing and an over-current condition exists. In this case, the A-device turns VBUS off and terminates the session.
VBUS capacitance
A dual-role device must have a VBUS capacitance CDRD_VBUS value comprised between 1 F and 6.5 F (see charge pump specification). The limit on the decoupling capacitance allows a B-device to differentiate between a powered-down dual-role device and a powereddown standard host. The capacitance on a host is higher than 96 F.
Data line pull-down resistance
When an A-device is idle or acting as host, it activates the pull-down resistors RPD on both DP and DN lines. When an A-device is acting as peripheral, it disables RPD on DP, not DN. The A-device can disable both pull-down resistors during the interval of a packet transmission when acting as either host or peripheral. The two bits of USB control register, dn_pulldown and dp_pulldown (Table 11) are used to connect/disconnect the pull-down resistors. When the line is not used, the pull-down is activated and the maximum level on this ball should not exceed 0.342 V.
Data line pull-up resistance
Full-speed and low-speed devices are differentiated by the position of the pull-up resistor from the peripheral device. A pull-up resistor is connected to DP line for a full-speed device and a pull-up resistor is connected to DN line for a low-speed device. The pull-up resistor value is in the range of 900 to 1600 when the bus is idle and 1425 to 3100 when the upstream device is transmitting.
www..com
Rev3
39/72
www..com
4 Functional description
STW4810
The two bits of USB control register dp_pullup and dn_pullup (Table 11) are used to connect/ disconnect pull-up resistors.
Session Request Protocol (SRP)
To save power, the OTG supplement allows an A-device to leave the VBUS turned off when the bus is not being used. If the B-device wants to use the bus when VBUS is turned off, then it requires the A-device to supply power on VBUS using the Session Request Protocol (SRP).
Initial conditions
The B-device does not attempt to start a new session until it has determined if the A-device has detected the end of the previous session. The B-device must ensure that VBUS is below VBUS_SESSION_END before requesting a new session. Additionally, the B-device switches a pull-down resistor (R_VBUS_PD) from VBUS to ground in order to quicken the discharge process as long as the B-device does not draw more than 8 mA from VBUS. R_VBUS_PD is activated by bit `vbus_dischrg' of USB control register 2, (Table 11). When the B-device detects that VBUS is below the VBUS_SESSION_END and that both DP and DN have been low (SEO) for at least 2 ms, then any previous session on the A-device is over and a new session can start.
Data-line pulsing
To indicate a request for a new session using the data line pulsing, the B-device turns on the DP pull-up resistor for 5 ms to 10 ms (only at full speed, no DN pulsing). The DP pull-up resistor is connected to VUSB (regulator output voltage). Timing is controlled by the USB digital control.
VBUS pulsing
To indicate a request for a new session using the VBUS pulsing method, the B-device waits for the initial conditions and then drives VBUS. VBUS is driven for a long enough period for a capacitance on VBUS that is smaller than 2x6.5 F to be charged to 2.1 V while a capacitance on VBUS higher than 97 F is not charged above 2.0 V. In this USB block, the VBUS_SESSION_VALID threshold is used to determine if an A-device is DRD (dual role device) or a standard host. The B-device VBUS pulsing block is designed so that the maximum drawn current does not exceed 8 mA. In this USB block, the pull-up is 600 +/- 30%. If a B-device is attached to a standard device, the pull-up must be disconnected after the defined timing to prevent damage of standard hosts not designed to withstand a voltage externally applied to VBUS.
Session Request Protocol (SRP)
If the B-device is in correct condition to start a new session, it first performs data line pulsing, followed by VBUS pulsing. When VBUS next crosses the SESSION VALID threshold, the Bdevice considers a session to be in progress and asserts the DP or DN data line within 100 ms. After SRP initialization, the B- device is set up to wait for at least 5 seconds for the A-device to respond before informing the user that the consumption attempt has failed.
Host Negotiation Protocol (HNP)
At the start of a session, the A-device has the role of host as default. During a session, the host role can be transferred back and forth between the A-device and the B-device any number of times using the Host Negotiation Protocol (HNP). The process for this exchange of host role is described in the "On the Go Supplement to the USB 2.0 Specification" (rev 1.0).
40/72 www..com
Rev3
www..com
STW4810 ID detector
4 Functional description
In either active or suspended power mode, the ID detector detects the condition of the ID line and differentiates between the following three conditions: - - - ID ball floating: (e.g. with USB B-device connected) ID ball shorted to ground: (e.g. with USB A-device connected) ID ball connected to ground through resistor RACC_ID: (e.g.with an accessory).
The transceiver pulls the ID ball to VID_HI (VBAT) through a resistance of RID_PU when an accessory is plugged in. In this case, the ID ball is externally connected to ground via Racc_ID resistor. Two comparators are used to detect the ID voltage: VID_GND and VID_FLOAT. The ID detector also has a switch that can be used to ground the ID ball. This switch is controlled by id_gnd bit of USB control register 2 (Table 11); This pull-down is used for CEA_KARKIT purposes.
Car kit interrupt detector
The transceiver is able to detect when the DP line is below the Carkit Interrupt threshold `cr_int', (see USB interrupt register) (refer to OTG specifications, Rev 0.92, 2.7, p13).
Charge pump
From VBAT_USB, the charge pump supplies VBUS, `vbus_drv' bit of USB control register 2 (Table 11) is used to enable/disable the charge pump.
LDO USB
From VBAT_USB, a LDO provides VUSB supply, `usb_en' bit of USB_EN register (Table 16) is used to enable/disable the VUSB LDO.
www..com
Rev3
41/72
www..com
4 Functional description
STW4810
4.4.3
USB enable control
STW4810 OFF
In this state, the overall system is able to detect USB connection through IT_WAKE_UP ball and with VBUS session valid comparator and ID detection ON. IT_WAKE_UP is activated (low level) in either of the two following cases: - - When Mini A connector cable is connected and ID goes low When activity on VBUS, i.e. a mini B is connected and is able to communicate. This mode is used to wake-up the modem platform. In this configuration, USBINTn ball is not enabled.
STW4810 ON, USB driver not enabled
The USBINTn is now enabled. If the USB cable is already connected while STW4810 is starting, the USB driver will be enabled when power management is ready.
Wake-up USB driver conditions - - - - A plug-in on a mini A-device and active ID detector B device is connected and ready to start data transfer, VBUS is driven high (session valid high) Activity on USB registers (00h to 0Fh - Table 8 to Table 15). Multimedia processor ready to wake-up and set-up USB PHY. Possibility to force PHY high (enable) when writing usb_en = 1 in USB EN register (Table 16) External it_wake_up =0 usb_en = 1 by writing to IC USB interface Access to any other USB register (00h to 0Fh) it_wake_up = 1, and only then Set usb_en bit of USB EN register (Table 16) to "0"
Set condition: one among the following possibilities - - -
Power down USB driver conditions in order to set the USB driver to power down mode: - -
42/72 www..com
Rev3
www..com
STW4810
4 Functional description
4.5
SD/MMC/SDIO module
This block provides the power supply (1.8 V, 2.85 V or 3 V) and signal shifting functions required to connect any of the following peripherals to the multimedia processor: - - - SD card MMC cards, low and 52 MHz high speed SDIO cards (except SDIO card version 1.0 / Vsupply range: [3.1; 3.6] V
Cards detection is automatically done by the multimedia processor system. Following a card detection, the multimedia processor starts the SD/MMC application by writing in the SD MMC control register (Table 17) to start LDO VMMC and then starts the protocol initialization. The module includes: - - - - 1.8 V, 2.85 V or 3 V voltage regulators (150 mA) Five bidirectional level shifter channels compatible with 1.8 V, 2.85 V or 3 V Two unidirectional lines for clock: multimedia processor to card and feedback clock to multimedia processor for synchronization. Four control signals for channel direction
Figure 13. SD MMC block diagram
SD/ MMC/SDIO INTERFACE
MCCMDDIR MCDATA0DIR MCDATA2DIR MCDATA31DIR VMMC
1.8V,2.85V,3V 150mA
VBAT_VMMC
MCCLK DRIVER
5 * RB Vsdc2 3 * RA 3 * RA
CLKOUT
EMIF
Level
RC Rs
SD, MMC SDIO OR CARDS
Dz
Shifter MCCMD MCDATA0 MCDATA[3:1] MCFBCLK CMDOUT DATAOUT0 DATAOUT[3:1] LATCHCLK
Dz
www..com
Rev3
43/72
www..com
5 Electrical and timing characteristics
STW4810
5
Electrical and timing characteristics
Otherwise specified parameters are defined for T = 25C. / VBAT = 3.6 V
5.1
Absolute maximum rating
Table 33.
Symbol
STW4810 absolute maximum ratings
Description Maximum power supply Min. -0.5 -30 -30 Typ. Max. 7 85 125 0.92 2 Units V C C W kV
Ta Tj
Maximum operating ambient temperature Maximum junction temperature Maximum power dissipation ESD performance(1)
1. : HBM Mil-Std-883 Method 3015
5.2
Package dissipation
Table 34.
Symbol
Package dissipation
Description Min. Typ. Max. Units
TFBGA 84 6x6x1.2mm 0.5mm ball pitch RTHJ-A Thermal resistance Junction to Ambient 70 C/W
VFBGA84 4.6x4.6x1.0mm 0.4mm ball pitch RTHJ-A Thermal resistance Junction to Ambient 76 C/W
5.3
Note:
Power supply
STW4810 has different ways to go in SLEEP mode.
The different possibilities for VCORE, VIO_VMEM and VAUX to be programmed to SLEEP mode are given in Table 29 and Table 26. Taking into account the bit programming of Table 29 and Table 26 related to SLEEP mode, SLEEP mode is summarized with the following formula: SLEEP = (Vxxx_SLEEP x PWREN) + (Vxxx_FORCE_SLEEP) = 1 (Vxxx = VCORE or VIO_VMEM or VAUX) In all the following tables: - - "Normal mode" is defined as "SLEEP = `0'" "SLEEP mode" is defined as "SLEEP = `1'"
Use Table 26 to refer to each Vxxx supply (VCORE or VIO_VMEM or VAUX).
44/72 www..com
Rev3
www..com
STW4810
5 Electrical and timing characteristics
5.3.1
Operating conditions
Table 35.
Symbol VBAT IQSLEEP IQSTDBY
Operating conditions (Temp range: -30 to +85 C)
Description Power supply Sleep mode Quiescent Current Off mode 4 A Test conditions Min. 2.7 170 Typ. Max. 5.5 250 Units V A
5.3.2
VREF18
Table 36.
Symbol VBAT VREF_18 PSRR
VREF18
Description Supply voltage Output voltage Power supply rejection ratio Noise Vpp = 0.3 V f 100 kHz 100 Hz f 100 kHz Test conditions Min. 2.7 1.78 1.8 60 30 7.77 9.46 Typ. Max. 4.8 1.84 Units V V dB V ms
tS
Settling time
www..com
Rev3
45/72
www..com
5 Electrical and timing characteristics
STW4810
5.3.3
VCORE DC/DC step-down converter
Table 37.
Symbol
VCORE DC/DC step-down converter
Description Test conditions Min. Typ. Max. Units
VCORE Regulator in Normal Mode (SLEEP = `0') / Otherwise specified; VCORE = 1.2 V VBAT VRIPPLE Input power supply Output voltage ripple VCORE_SEL[3:0] 1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 (default) 0011 0010 0001 0000 -3.7% Battery voltage 2.7 3.6 10 4.8 V mVpp
VOUT
Programmable output voltage
-4.25%
-5%
1.50 1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.26 1.24 1.22 1.20 1.15 1.10 1.05 1.00
+3.7%
V
+4.25%
+5% 600 mA % 10 10 mV mV A A A dB
IOUT PEFF LIR LDR(1) ISHORT IQ ILKG PSRR(1) LIRT
Output current Power efficiency Line regulation Load regulation Short circuit current limitation Quiescent current Power-down current Power supply rejection Transient line regulation Transient load regulation IOUT = 0 mA `en_vcore' = 0 Vpp = 0.3 V [0; 20] kHz VBAT = 300 mV tR = tF = 10 s IOUT = [1; 600] mA tR = tF = 100 ns 40 7 VBAT = 3.6 V IOUT = 200 mA VBAT: [2.7; 4.8]V IOUT: [0.1; 600] mA 0.9 1.2 130 86
1.4 250 1
mV
LDRT
70
mV
46/72 www..com
Rev3
www..com
STW4810
Table 37.
Symbol
5 Electrical and timing characteristics
VCORE DC/DC step-down converter
Description Test conditions Min. Typ. Max. Units
VCORE Regulator in Sleep Mode (SLEEP= `1') VBAT VRIPPLE LIR LDR IOUT PEFF IQ LIRT Input power supply VCORE output voltage ripple Line regulation Load regulation VCORE output current Power efficiency Quiescent current Transient line regulation VBAT= 3.6 V IOUT: [0.1; 5] mA IOUT = 0 mA VBAT= 300 mV tR = tF = 10 s 85 20 7 30 % A mV VBAT: [2.7; 4.8]V IOUT: [0.1; 5] mA Battery voltage 2.7 3.6 10 10 10 5 4.8 V mVpp mV mV mA
1. Guaranteed by design
5.3.4
VIO_VMEM DC/DC step-down converter
Table 38.
Symbol
VIO_VMEM DC/DC step-down converter
Description Test conditions Min. Typ. Max. Units
VIO_VMEM Regulator in Normal Mode (SLEEP = `0') VBAT VOUT VRIPPLE LIR LDR(2) IOUT PEFF Input power supply Output voltage (1) Output ripple Line regulation Load regulation Output current Power efficiency Short circuit current limitation Quiescent current Power supply rejection Transient line regulation IOUT = 0 mA Vpp = 0.3 V [0; 20] kHz VBAT = 300 mV tR = tF = 10 s 40 7 VBAT = 3.6 V, VIO = 1.8 V IOUT= 100 mA 0.9 VBAT: [2.7; 4.8]V IOUT: [0.1; 600] mA Battery voltage 2.7 -3% 3.6 1.8 10 10 10 600 4.8 +3% V V mVpp mV mV mA
90 1.2 130 1.4 250
% A A dB mV
ISHORT IQ PSRR(2) LIRT
www..com
Rev3
47/72
www..com
5 Electrical and timing characteristics
STW4810
Table 38.
Symbol LDRT
VIO_VMEM DC/DC step-down converter
Description Transient load regulation Test conditions IOUT= [1; 600] mA tR = tF = 100 ns Min. Typ. 70 Max. Units mV
VIO_VMEM Regulator in Sleep Mode (SLEEP='1') VBAT VRIPPLE LIR LDR IOUT PEFF IQ LIRT Input power supply Output ripple Line regulation Load regulation Output current Power efficiency Quiescent current Transient line regulation VBAT = 3.6 V IOUT = [0.1; 5] mA IOUT = 0 mA VBAT = 300 mV tR = tF = 10 s 7 85 15 % A mV VBAT: [2.7; 4.8]V IOUT: [0.1; 5] mA Battery voltage 2.7 3.6 10 10 10 5 4.8 V mVpp mV mV mA
1. Including output voltage temperature coefficient, DC line and load regulations, voltage reference accuracy, industrial manufacturing tolerances and ripple voltage due to switching 2. Guaranteed by design
48/72 www..com
Rev3
www..com
STW4810
5 Electrical and timing characteristics
5.3.5
LDO regulators
VPLL
Table 39.
Symbol
LDO regulators - VPLL
Description Test conditions Min. Typ. Max. Units
VPLL Regulator in Normal Mode / Otherwise specified, VPLL = 1.8 V VBAT Input power supply Battery voltage VPLL_SEL[1:0] 11 (default) 10 01 00 2.7 3.6 4.8 V
VOUT
Output voltage
-3%
1.8 1.3 1.2 1.05 3.5
+3%
V
IOUT ISHORT IQ ILKG
Output current Short-circuit limitation Quiescent current Power-down current Power supply rejection Line regulation Load regulation Transient line regulation Transient load regulation Noise density IOUT = 0 mA EN_VPLL = 0 Vpp = 0.3 V f < 10 kHz 10 kHz < f <100 kHz VBAT: [2.7; 4.8]V IOUT: [0.1; 10] mA VBAT = 300 mV tR = tF = 10 s IOUT = [0.1; 10] mA tR = tF = 1 s at 1 KHz BW = 100 Hz 95
10 165 40 1
mA mA A A
130 30
PSRR(1) LIR LDR LIRT LDRT
55 45 5 10 1
dB dB mV mV mV
1
mV nV 250 rms -----------Hz
En(1)
1. Guaranteed by design
www..com
Rev3
49/72
www..com
5 Electrical and timing characteristics
STW4810
VANA
Table 40.
Symbol
LDO regulators - VANA
Description Test conditions Min. Typ. Max. Units
VANA regulator in normal mode VBAT VOUT IOUT ISHORT IQ ILKG PSRR(1) LIR LDR LIRT LDRT Input power supply Output voltage Output current Short-circuit limitation Quiescent current Power-down current Power supply rejection Line regulation Load regulation Transient line regulation Transient load regulation IOUT = 0 mA EN_VANA = 0 Vpp = 0.3 V f < 10 kHz VBAT: [2.7; 4.8] V IOUT: [0.1; 10] mA VBAT = 300 mV tR = tF = 10 s IOUT = [0.1; 10] mA tR = tF = 1 s 3 45 5 5 39 51 Battery voltage 2.7 -5% 3.6 2.5 4.8 +5% 10 64 30 1 V V mA mA A A dB mV mV mV
15
mV
1. Guaranteed by design
VAUX
Table 41.
Symbol
LDO regulators - VAUX
Description Test conditions Min. Typ. Max. Units
VAUX Regulator in Normal Mode (PDN_VAUX= 1, SLEEP= `0') VOUT = 1.5V VBAT Input power supply VOUT = 1.8/2.5 V VOUT = 2.8 V VAUX_SEL[1:0] 00 (default) 01 10 11 1.7 2.7 3 -3% 3.6 3.6 1.5 1.8 2.5 2.8 4.8 4.8 4.8 +3% V V V
VOUT
Output voltage
IOUT ISHORT IQ
Output current Short-circuit limitation Quiescent current IOUT = 0 mA 500 700
150 900 30
mA mA A
50/72 www..com
Rev3
www..com
STW4810
Table 41.
Symbol ILKG
5 Electrical and timing characteristics
LDO regulators - VAUX
Description Power-down current Test conditions PDN_VAUX = 0 VOUT=1.5 V Vpp = 0.3 V f < 10 kHz VOUT=1.5 V VBAT: [2.7; 4.8]V VOUT=1.5 V IOUT= [0.1; 150] mA VBAT = 300 mV tR = tF = 10 s IOUT = [10; 90%] mA tR = tF = 1 s 2 Min. Typ. Max. 1 Units A
PSRR
(1)
Power supply rejection Line regulation
32
dB
LIR LDR(1) LIRT LDRT tS
5
mV
Load regulation Transient line regulation Transient load regulation Settling time
10
mV
mV
35 100
mV s
VAUX Regulator in Sleep Mode (PDN_VAUX= 1, SLEEP='1') VOUT = 1.5V VIO_VMEM supply VBAT Input power supply VOUT = 1.8/2.5 V VOUT = 2.8 V VAUX_SEL[1:0] 00 (default) 01 10 11 1.7 2.7 3 3.6 3.6 4.8 4.8 4.8 V V
-3%
VOUT
Output voltage
1.5 1.8 2.5 2.8
+3% V
IOUT IQ PSRR(1)
Output current Quiescent current Power supply rejection Line regulation IOUT = 0 mA VOUT=1.5 V Vpp = 0.3 V f < 10 kHz VOUT=1.5 V VBAT: [2.7; 4.8]V VOUT=1.5 V IOUT= [10; 90%] A VBAT = 300 mV tR = tF = 10 s IOUT = [10; 90%] A tR = tF = 1 s 2 38
500 15
A A dB
LIR LDR LIRT LDRT
5
mV
Load regulation Transient line regulation Transient load regulation
10
mV
mV
35
mV
1. Guaranteed by design
www..com
Rev3
51/72
www..com
5 Electrical and timing characteristics
STW4810
5.3.6
Power supply monitoring
This block monitors the VCORE and VIO_VMEM output voltage. If VCORE or VIO_VMEM drops below the threshold, the multimedia processor is reset. Table 42.
Symbol Threshold THCORE(1) THVIO(1) Threshold VCORE Threshold VIO_VMEM -3% -3% VCORE-150 1.65 +3% +3% mV V
Power supply monitoring
Description Test conditions Min. Typ. Max. Units
Comparators VBAT tRES HYFALL HYRIS Supply voltage Response time Hysteresis (input voltage falling) Hysteresis (input voltage rising) 2.7 3.6 100 26 +4 4.8 V ns mV mV
1. Guaranteed by design
52/72 www..com
Rev3
www..com
STW4810
5 Electrical and timing characteristics
5.4
5.4.1
Digital specifications
CMOS input/output static characteristics: I2C interface
Table 43.
Symbol IC interface(1) VIL VIH IIL IIH Low level input voltage High level input voltage Low level input current High level input current Low level output voltage High level output voltage IOL = 3mA (with open drain or open collector) IOL = 3mA (with open drain or open collector) 0.8*VIO 0.7*VIO -1.0 -1.0 1.0 1.0 0.3*VIO V V A A
CMOS input/output static characteristics: IC interface
Description Test conditions Min. Typ. Max. Units
VOL
0.2*VIO
V
VOH
V
1. Vio is for VIO_VMEM
5.4.2
CMOS input/output dynamic characteristics: I2C interface
Table 44.
Symbol IC interface (Figure 8) Fscl thigh tlow tr tf thd_sta tsu_sta thd_dat tsu_dat tsu_sto tbuf Cb
1.
CMOS input/output dynamic characteristics: IC interface
Description Min. Typ. Max. Units
Clock frequency Clock pulse width high Clock pulse width low SDA, SCL, USBSDA, USBSCL rise time SDA, SCL, USBSDA, USBSCL fall time Start condition hold time Start condition set up time Data input hold time Data input set up time Stop condition set up time Bus free time Capacitive load for each bus line 600 1300 20+0.1*Cb (1) 20+0.1*Cb 600 600 0 250 600 1300
400
Khz ns ns
300 300
ns ns ns ns ns ns ns ns
400
pF
Cb = total capacitance of one bus line in pF
www..com
Rev3
53/72
www..com
5 Electrical and timing characteristics
STW4810
5.4.3
CMOS input/output static characteristics: VIO level
USB and control I/Os
Table 45.
Symbol
VIO level: USB and control I/Os
Description Test conditions Min. Typ. Max. Units
SW_RESETn, VDDOK, PORN, PWREN, TCXO_EN, REQUEST_MC, CLK32K, CLK32K_IN, USBOEN, USBVP, USBVM, USBRCV, USBINTn, MASTER_CLK VIL(1) VIH IIL IIH CIN VOL VOH tOF tOR CI/O Low level input voltage High level input voltage Low level input current High level input current Input capacitance Low level output voltage High level output voltage Output fall time Output rise time Driving capability IOL = TBD IOL = TBD Capacitance 10pF Capacitance 10pF 0.8*Vio TBD TBD 100 0.7*Vio -1.0 -1.0 1.5 1.5 10 0.2*Vio 0.3*Vio V V A A pF V V ns ns pF
1. Vio for VIO_VMEM
54/72 www..com
Rev3
www..com
STW4810 MMC Interface
Table 46.
Symbol
5 Electrical and timing characteristics
VIO level: MMC interface
Description Test conditions Min. Typ. Max. Units
MMC Interface: MCCLK, MCFBCLK, MCCMDDIR, MCCMD, MCDATA2DIR, MCDAT2, MCDATA0DIR, MCDAT0, MCDAT31DIR, MCDAT3, MCDAT1 VIL(1) VIH IIL IIH CIN VOL VOH CI/O Low level input voltage High level input voltage Low level input current High level input current Input capacitance Low level output voltage High level output voltage Driving capability at 52 MHz IOL = TBD IOL = TBD 0.8*Vio 30 0.7*Vio -1.0 -1.0 1.5 1.5 10 0.2*Vio 0.3*Vio V V A A pF V V pF
1. Vio for VIO_VMEM
www..com
Rev3
55/72
www..com
5 Electrical and timing characteristics
STW4810
5.4.4
CMOS input/output static characteristics: VBAT level
Table 47.
Symbol
CMOS input/output static characteristics: VBAT level
Description Test conditions Min. Typ. Max. Units
IT_WAKE_UP, PON, GPO1, GPO2 VIL VIH IIL IIH CIN VOL Low level input voltage High level input voltage Low level input current High level input current Input capacitance Low level output voltage High level output voltage Output fall time Output rise time Driving capability IT_WAKE_UP, GPO1, GPO2 IOL = TBD IT_WAKE_UP, GPO1, GPO2 IOL = TBD Capacitance 10pF Capacitance 10pF 0.8*Vbat TBD TBD 100 PON PON PON PON 0.7*Vbat -1.0 -1.0 1.5 1.5 10 0.2*Vbat 0.3*Vbat V V A A pF V
VOH tOF tOR CI/O
V ns ns pF
56/72 www..com
Rev3
www..com
STW4810
5 Electrical and timing characteristics
5.4.5
CMOS input/output static characteristics: VMMC level
Table 48.
Symbol
CMOS input/output static characteristics VMMC level
Description Test conditions Min. Typ. Max. Units
DATAOUT0, DATAOUT1, DATAOUT2, DATAOUT3, CMDOUT, LATCHCLK, CLKOUT VIL VIH IIL IIH CIN VOL VOH CI/O Low level input voltage High level input voltage Low level input current High level input current Input capacitance Low level output voltage High level output voltage Driving capability IOL = TBD IOL = TBD 0.8*VMMC 40 pF 0.7*VMMC -1.0 -1.0 1.5 1.5 10 0.2*VMMC A A pF 0.3*VMMC
www..com
Rev3
57/72
www..com
5 Electrical and timing characteristics
STW4810
5.5
USB OTG transceiver
Table 49.
Symbol UART Mode CLOAD= [50;100] pF [10; 90] % of VOH-VOL CLOAD= [50;100] pF 10......90% of VOH-VOL CLOAD= [50;100] pF 50% of |VOH-VOL| CLOAD= [50;100] pF 50% of |VOH-VOL|
USB OTG transceiver
Description Test conditions Min. Typ. Max. Units
tR
Rise time
100
ns
tF
Fall time
100
ns
tPLH tPHL
Drive propagation delay low => high Drive propagation delay high => low
100
ns
100
ns
USB Full Speed Mode (DP & DN signals) tR tF DRFM OSCV PDEL Rise time Fall time Differential rise an fall time matching Output signal crossover voltage Propagation delay
USBVP & USBVM : - Trise & Tfall < 1 ns - Skew < 0.66 ns
4 4 90 1.3
20 20 111 2 18
ns ns % V ns
USB Low Speed Mode (DP & DN signals) tR tF DRFM OSCV Rise time Fall time Differential rise an fall time matching Output signal crossover voltage 75 75 80 1.3 300 300 125 2 ns ns % V
VBUS Comparators VBAT tRR tFR Input power supply Rising reacting time Fall reacting time Battery voltage 3.1 3.6 1.7 2.1 4.8 V s s
Threshold VBUS Monitoring VBval VBses VBUS valid VBUS session valid 4.4 1.8 4.5 4.6 2 V V
58/72 www..com
Rev3
www..com
STW4810
Table 49.
Symbol VBUS RA_BUS_
IN
5 Electrical and timing characteristics
USB OTG transceiver
Description Test conditions Min. Typ. Max. Units
40 VBUS = [0; 4.4] V ILOAD = 100mA External cap 10F
100
K
TA_VBUS_
RISE
100
ms
Data Line Pull-down Resistance RPD_DPDN Data Line Pull-up Resistance RPU_DP RPU_DN PULL-DOWN on VBUS RVBUS_PD PULL-UP on VBUS RVBUS_SRP ID VID_GND VID_HI (VBAT) VID_FLOAT RPU_ID RPD_ID ID_GND comparator threshold Battery level ID_FLOAT comparator threshold 70 2.7 V < VBAT < 4.8 V 0.15*VBAT V 420 600 780 650 925 1200 Bus idle Bus driven Bus idle Bus driven 900 1425 900 1425 1200 2300 1200 2300 1600 3100 1600 3100 14 19 25 K
2.7
3.6
4.8
V
0.85*VBAT 100 130 10
V K K
www..com
Rev3
59/72
www..com
5 Electrical and timing characteristics
STW4810
Table 49.
Symbol
USB OTG transceiver
Description Test conditions Min. Typ. Max. Units
Carkit Threshold Detection cR_INT Transceiver VOH_TXD_ DAT VOL_TXD_ DAT VIH_RXD
_DAT
Carkit interrupt threshold
0.4
0.6
V
TXD output high on ISOURCE = 500 A DN TXD output low on DN RXD input high on DP RXD input low on DP ISINK = 2mA
2.4
3.6 0.4
V V V
2 0.8
VIL_RXD_
DAT
V
Charge Pump VBAT VBUS Input power supply Output voltage Battery voltage Current load up to 100 mA [0;4.8] V) Ext. load: 100 mA + External cap = 10F No Load Current load 8 mA Current load 100mA VUSB+0.1 4.75 3.6 5 4.8 5.25 V V
tS IQ VRipple IOUT
Settling time Quiescent current Amplitude output ripple on VBUS Output current
1.2 2.7 25 40 100
ms mA mV mV mA % %
Eff
Efficiency
VBAT = 3.0V IOUT =100mA VBAT= 3.6V. IOUT = 8 mA.
85 60
VUSB regulator VBAT(1) Battery voltage: VBAT min = VOUT + 0.1V VBAT min= VOUT + 0.1V
Input voltage
VUSB+0.1
3.6
5.5
V
VOUT ISHORT IQ PSRR(2)
Output voltage Short circuit current limitation Quiescent current Power supply rejection
3.0
3.1
3.2 320
V mA A dB
No load VBAT= VOUT+0.2V f < 20 kHz 45
70
60/72 www..com
Rev3
www..com
STW4810
Table 49.
Symbol NVOUT LIRT tS tD
5 Electrical and timing characteristics
USB OTG transceiver
Description Output noise voltage Transient line regulation Settling time OFF->ON Discharge time ON>OFF Test conditions VBAT= VOUT+0.2V 10Hz 1. From 4.8 V to 5.5 V, charge pump is "Off" and no OTG feature is provided 2. Guaranteed by design
www..com
Rev3
61/72
www..com
5 Electrical and timing characteristics
STW4810
5.6
SD/MMC card interface
Table 50.
Symbol
SD/MMC card interface
Description Test conditions Min. Typ. Max. Units
VMMC regulator specifications (PDN_VMMC = 1) VOUT = 3 V VOUT = 2.85 V VOUT = 1.8 V 3.25 3.1 2.7
VBAT
Input voltage
3.6
4.8
V
VOUT IOUT ISHORT IQ ILKG
Output voltage Output current Short circuit current limitation Quiescent current Power-down current Power supply rejection IOUT = 0 mA PDN_VMMC = 0 IOUT = 150 mA Vpp = 0.3 V f < 20 kHz VOUT=2.85 V VBAT: [3.1; 4.8]V VOUT=2.85 V IOUT= [1; 150] mA VOUT=2.85 V VBAT: 3.1 to 3.4V tR = tF = 10 s. IOUT = [1; 150] mA tR = tF = 1 s IOUT = 0 mA IOUT = 0 mA
-3%
3 2.85 1.8
+3% 150
V mA mA A A
240
360
600 30 1
PSRR(1)
45
dB
LIR(1) LDR(1)
Line regulation
5
mV
Load regulation
10
mV
LIRT
Transient line regulation Transient load regulation Settling time OFF->ON Discharge time ON>OFF
2
mV
LDRT tS tD
25 100 1
mV s ms
Bus line specifications RA(2) RB fDT fID Pull-up resistor Pull-down resistor To prevent bus floating To prevent bus floating 1.5 1.5 52 400 M M MHz KHz
Clock frequency With CL = 30pF data transfert mode Clock frequency identification mode With CL = 30pF
62/72 www..com
Rev3
www..com
STW4810
Table 50.
Symbol TPHC TPCH
5 Electrical and timing characteristics
SD/MMC card interface
Description Propagation time from Host to card Propagation time from card to host Clock /data skew time from host to card Clock /data skew time from card to host Rise time Fall time Between multimedia processor & STW4810 Between STW4810 & MMC card Bus line capacitance f < 52 Mhz Bus line capacitance f < 52 MHz Test conditions Min. Typ. 7 7 Max. Units ns ns
Figure 14 Figure 14 Figure 14 Reference is CLKOUT Figure 14 Reference is MMCLK
TSHC
+/- 0.5
ns
TSCH TR TF
+/- 0.5 3 3
ns ns ns
C1LINE
20(3)
pF
C2LINE
20 + 20(4)
pF
1. Guaranteed by design 2. MMC interface pull up resistors are in EMIF06-HCM01F2 device (7 K for CMD; 75 K for Data wires) 3. 20 pF for equivalent board parasitic capacitance. 4. 20 pF for EMIF06 protection + 20 pF for board parasitic capacitance.
Figure 14. Propagation and clock/data skew times
2 ns
MCCLK MCCMD MCDATA[3:0] MCFBCLK CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK 90% 10% 90% 50% 10% 2 ns
2 ns
90% 50%
TSHC
TPHC
t
MCCLK 10%
CLKOUT
50% MCDATA[3:0] DATAOUT[3:0]
TPHC 2 ns
CLKOUT CMDOUT DATAOUT[3:0] LATCHCLK MCCLK MCCMD MCDATA[3:0] MCFBCLK 90% 10% 90% 50% 10% 2 ns
t
2 ns
90% 50%
TSCH
TPCH
t
CLKOUT 10%
MCCLK
50% DATAOUT[3:0] MCDATA[3:0]
TPCH
t
www..com
Rev3
63/72
www..com
6 Application information
STW4810
6
6.1
Application information
Components list
Table 51.
Name C1 22F C4 C2 C3 C5 C6 C7 C8 C10 C13 C9 C11 C12 C13, C14, C15, C16, C17 L1 4.7H L2 See Table 52. for recommended coils Coil VCORE DC/DC 470nF 4.7F 2.2F 1 F 1F 10F In the complete system application, the sum of the capacitors connected on each STW4810 ball must never be less than 30% of the value indicated in the typical value column of this table. This includes all capacitor parameters: - production dispersion - DC bias voltage applied - temperature range of the complete system application - aging VCORE output filter VBAT_VIOVMEM decoupling VBAT_ANA decoupling VBAT_VCORE decoupling VPLL output filter VANA output filter VREF output filter VUSB output filter VAUX output filter Flying capacitor for charge pump VBUS output filter (tank charge pump capacitor) VSD_MMC output filter Vbattery input voltage decoupling capacitors Coil VIOVMEM DC/DC
Components list
Typical value Comments Function VIO_VMEM output filter
Table 52.
Supplier
List of 4.7 H coils
Part Number VLF3010AT-4R7MR70 DCR () 0.28 0.16 0.14 0.15 0.32 0.19 Irms(1) (A) 0.7 0.74 1.1 1.1 1.1 1.1 L x l x h (mm * mm * mm) 2.8 * 2.6 * 1.0 2.8 * 2.6 * 1.2 3.7 * 3.5 * 1.2 5.5 * 4.2 * 1.8 3.3 * 3.3 * 1.4 3.2 * 2.5 * 2.0
TDK
VLF3012AT-4R7MR74 VLF4012AT-4R7M1R1 DO1605T-472MX
Coilcraft
DO3314-472ML ME3320-472MX
1. Irms: 30% decrease of initial value
64/72 www..com
Rev3
www..com
STW4810
Table 53. Other ST components
Name EMIF02 EMIF06 Order code EMIF02USB05 EMIF06-HMC01F2
6 Application information
Function USB ESD/EMI Protection MMC Interface ESD/EMI Protection
www..com
Rev3
65/72
www..com
6 Application information
STW4810
6.2
Application schematics
Figure 15. STW4810 application schematics
C1 L1 MODEM & SYSTEM CLOCK C2 VLX_VIOVMEM VMINUS_VIOVMEM VBAT_VIOVMEM VIOVMEM_FB C13(*) VBAT_DIG VMINUS_DIG PON CLK32Kin MASTER_CLK IT_WAKE_UP REQUEST_MC TCXO_EN B9 D3 C3 VBAT_ANA VMINUS_ANA C4 L2
C5 VBAT_VCORE VLX_VCORE
VMINUS_VCORE
VCORE
C14(*) VBAT_VPLL_VANA C6 VPLL VANA C7 C8 VREF VBAT_VAUX C13 VAUX C16(*) C15(*)
PWREN VDDOK PORn CLK32K SW_RESETn SCL SDA Multimedia processor USBVP USBOEn USBVM USBRCV USBINTn USBSCL USBSDA MCCLK MCFBCLK MCCMDDIR MCCMD MCDAT0DIR MCDAT0 MCDAT31DIR MCDAT[3,1] MCDAT2DIR MCDAT2
VBAT_USB VMINUS_USB CP CN C10 C11 C9
STW4810
VUSB VBUS ID USB SD MMC EMI Filter SDIO CARD ESD DP DN EMI filter C17(*) C12 VMMC R1 R1
EMIF02
VBAT_MMC
3
DATOUT[3:1] DATAOUT0 CMDOUT CLKOUT LATCHCLK
3
GPO1 GPO2 (*) The usefulness of these capacitors depend of PCB layout
EMIF06-HMC01F2
66/72 www..com
Rev3
www..com
STW4810
7 Package mechanical data
7
7.1
Package mechanical data
TFBGA 84 balls
See Figure 16: TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing. Table 54. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing dimensions(1) Min. Typ. Max.
1.16 0.20 0.25 0.82 0.25 5.90 0.30 6.00 4.50 5.90 6.00 4.50 0.45 0.65 0.50 0.75 0.55 0.85 0.08 6.10 0.35 6.10 0.30
Drawing dimensions (mm)
A A1 A2 b D D1 E E1 e f ddd
1. These measurements conform to JEDEC standards
www..com
Rev3
67/72
www..com
7 Package mechanical data
STW4810
Figure 16. TFBGA 84 balls 6x6x1.2mm body size / 0.5 ball pitch drawing
Note:
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.
68/72 www..com
Rev3
www..com
STW4810
7 Package mechanical data
7.2
VFBGA 84 balls
See Figure 17: VFBGA 84 balls 4.6x4.6x1.0 mm body size / mm ball pitch drawing. Table 55. VFBGA 84 balls / 4.6x4.6x1.0 mm body size / 0.4 mm ball pitch(1) Min. Typ. Max.
0.864 0.15 0.19 0.615 0.18 0.435 0.21 4.55 0.25 4.60 3.60 4.55 4.60 3.60 0.40 0.50 0.08 0.13 0.04 4.65 0.29 4.65 0.23
Drawing dimensions (mm)
A A1 A2 A3 A4 b D D1 E E1 e f ddd eee fff
1. These measurements conform to JEDEC standards
www..com
Rev3
69/72
www..com
7 Package mechanical data
STW4810
Figure 17. VFBGA 84 balls 4.6x4.6x1.0 mm body size / mm ball pitch drawing
Note:
The terminal A1 corner must be identified on the top surface by using a corner chamfer, ink or metallized markings, or other feature of package body or integral heatslug. A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1 corner. Exact shape of each corner is optional.
70/72 www..com
Rev3
www..com
STW4810
8 Revision history
8
Revision history
Date 24-Jan-06 Revision 1 Initial release. Modified document title. Reviewed list of applications on cover page. Replaced APE with multimedia processor. Replaced fuse with analogue function. Renamed VFUSE as VANA. Modified figure 6 - Control interface - I2C format Correction of Figure 13: SD MMC block diagram. Correction of Figure 15: STW4810 application schematics. Changes
7-Feb-06
2
9-Feb-06
3
www..com
Rev3
71/72
www..com
STW4810
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
(c) 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com
72/72 www..com
Rev3


▲Up To Search▲   

 
Price & Availability of STW4810

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X